Устройство ЖК-дисплея

Описание устройства карманного компьютера начнем с самого привлекательного и самого дорогого компонента — жидкокристаллического экрана. Именно он в значительной степени определяет стоимость и класс компьютера, именно он требует от пользователя бережного отношения.

Все ЖК экраны компьютеров семейств Pocket PC 2002 и 2003 построены по технологии активной матрицы. В альтернативных аппаратах иногда встречаются и пассивные экраны, например, в Pocket Manager ВЕ300 от Casio.

Принцип действия жидкокристаллической матрицы основан на способности жидких кристаллов принимать в электромагнитном поле упорядоченное положение и снова располагаться хаотично при его отсутствии. Если сильно увеличить одну ячейку жидкокристаллической матрицы, то можно увидеть, что она представляет собой герметичную капсулу, в которой заключено небольшое количество жидких кристаллов. Основанием капсулы служит стекло с прозрачным тонкопленочным электрическим проводником. Когда на проводник ячейки подается электрический потенциал определенной полярности, кристаллы принимают упорядоченное положение, когда потенциал не подается — возвращаются в хаотичное исходное состояние. Таким образом устроена ячейка пассивной матрицы.

Устройство активной матрицы сложнее. Поскольку при исчезновении потенциала жидкие кристаллы стремятся вернуться в исходное положение, у пассивной матрицы возникает эффект инерционности изображения. Чтобы удержать кристаллы в определенном положении, потенциал должен подаваться постоянно. Для этого в активной матрице к каждой ячейке подводится не просто проводник, а вывод тонкопленочного транзистора (отсюда и название TFT — Thin Film Transistor — тонкопленочный транзистор), который сохраняет заряд до того момента, пока на него не будет подан электрический сигнал обратной полярности. Применение транзисторов вместо простых проводников многократно усложняет устройство и в конечном итоге производство жидкокристаллических матриц. Ведь в прямоугольной матрице размером 57,6 х 76,82 мм расположено 76 800 ячеек размером 0,24 мм, каждая из которых представляет собой комплекс из трех более мелких ячеек — триад — из которых затем синтезируется цветное изображение.

Каждая ячейка, состоящая из трех элементов триады, представляет собой пиксел и имеет прямоугольную форму. Сами ячейки образованы продольными перегородками на стекле подложки экрана и поперечными пластиковыми вставками. Ячейки этой решетки заполняются жидкими кристаллами и накрываются покровным, внешним

Но это еще не все. Кроме токопроводящего пленочного слоя, расположенного на покровном стекле, в толще жидкокристаллической матрицы есть еще несколько слоев. Во-первых, это внутренний поляризационный фильтр, расположенный между лампой подсветки экрана и стеклом подложки матрицы. Затем идет матрица микроскопических светофильтров, в которой каждому элементу триады образующей пиксель, соответствует один из базовых цветов — красный, зеленый или синий (red, green, blue, RGB). На внешней поверхности покровного стекла экрана устанавливается второй поляризационный фильтр. Наконец, сверху матрицы располагается специальный прозрачный экран сенсорной чувствительности.

Как работает эта сложная система? Контроллер дисплея, согласно командам операционной системы строит изображение и подает его в виде электрических сигналов на выводы транзисторов ячеек матрицы. Жидкокристаллическая матрица является устройством вывода информации с непосредственной адресацией. То есть напряжение к каждой ячейке матрицы (к каждому пикселу) подается индивидуально, а не построчным сканированием луча, как это происходит в электронно-лучевых трубках мониторов настольных компьютеров. Благодаря этому изображение, получаемое при помощи жидкокристаллической матрицы, отличается высокой стабильностью и полным отсутствием геометрических искажений.

Сами по себе жидкие кристаллы какого-либо изображения построить не способны, поскольку света не излучают. Их роль в матрице — перекрыть либо пропустить световой поток от лампы подсветки. При этом яркость изображения зависит от яркости лампы подсветки, а контрастность — от точного совпадения направления луча света и вектора ориентации жидких кристаллов.

Повысить контраст изображения до приемлемого уровня, призвана пара фильтров-поляризаторов — внутреннего и внешнего. Свет лампы подсветки, проходя через внутренний поляризационный фильтр, ориентируется таким образом, что направление вектора поляризации совпадает с вектором ориентации кристаллов, которые под воздействием управляющего сигнала контроллера располагаются параллельно поляризованным лучам света. Свет в этом случае проходит беспрепятственно, пиксел выглядит ярко светящимся. Если кристаллы в ячейке матрицы располагаются под углом к лучам света и частично перекрывают его, пиксел выглядит затемненным (таким образом строится полутоновое изображение). Кристаллы, расположенные перпендикулярно, полностью перекрывают лучи света, испускаемые лампой подсветки, — пиксел выглядит темным.

Цветное изображение строится при прохождении света через элементы триад пиксела — сочетанием трех базовых цветов. Яркость свечения пиксела матрицы регулируется степенью пропускания света кристаллами при их повороте (кручении) под воздействием поданного на ячейку электрического потенциала. Наконец, пройдя сквозь слой жидких кристаллов и матрицу цветных светофильтров, лучи света поляризуются внешним поляризационным фильтром, отсекающим паразитные световые отражения от поверхности кристаллов и внутренних слоев жидкокристаллической матрицы.

В качестве подсветки в экранах карманных компьютеров используются либо трубчатые люминесцентные лампы белого свечения (в карманных компьютерах с монохромным экраном — белого, янтарного или зеленого свечения), либо люминесцентные полимерные панели, излучающие свет всей поверхностью. Если в качестве источника света используются лампы, то за внутренним стеклом жидкокристаллической матрицы установлена относительно толстая стеклянная призма. Лампы светят в ее торцы, а призма рассеивает свет, обеспечивая тем самым равномерность подсветки экрана. Поскольку площадь экрана КПК невелика, а проблема энергосбережения стоит достаточно остро, зачастую подсветка осуществляется одной лампой.

Так были устроены экраны карманных компьютеров до появления семейства Pocket PC. Именно в это время среди пользователей и компьютерных аналитиков разгоралась жаркая дискуссия — нужен ли вообще карманному компьютеру цвет? Дело в том, что в то время даже самая качественная жидкокристаллическая матрица давала изображение по яркости и контрасту уступавшее изображению, получаемому при помощи электроннолучевой трубки. Теперь вспомните, что происходит, когда в комнату, где работает телевизор, проникает яркий солнечный свет — изображение на экране телевизора практически исчезает. При этом контраст изображения электроннолучевой трубки вчетверо выше, чем контраст изображения жидкокристаллической матрицы рядового КПК.

Казалось бы, в условиях дневного освещения, не говоря уже о ярком солнечном свете, у цветной жидкокристаллической матрицы нет ни одного шанса — на экране карманного компьютера ничего не видно, включай подсветку или не включай (она на компьютерах с активными матрицами, кстати, и не выключалась). Но монохромные экраны со своей задачей справлялись, поскольку основной их режим — работа в отраженном свете. То есть внешний свет попадает на экран, проходит сквозь прозрачные слои матрицы, отражается от внутренней поверхности и поверхности кристаллов и возвращается, участвуя в построении экранного изображения.

По такому же принципу построены экраны всех карманных компьютеров Pocket PC 2002. Отражающие (или рефлективные) экраны имеют такое же устройство, как и обычная активная жидкокристаллическая матрица, но за одним исключением. На внутреннюю поверхность стеклянной призмы, которая рассеивает свет от лампы подсветки, нанесена отражающая амальгама, увеличивающая отражающую способность призмы. В результате яркий внешний свет проникает сквозь прозрачные слои экрана, отражается от поверхности призмы и возвращается, осуществляя подсветку.

Комбинация рефлективного экрана и лампы подсветки позволяет подобрать наиболее эффективный режим вывода изображения, при котором пользователю даже прямые солнечные лучи перестают быть помехой. А с практической точки зрения, отражающие экраны выглядят мягче и спокойнее, чем активные матрицы. Возможно на них не такие яркие и насыщенные цвета, зато работать с таким экраном комфортнее и безопаснее. Проблема не только в каких-то вредных излучениях, но и в резком перепаде яркостей. На ярком солнечном свете даже чтение обычного текста с обычной бумаги превращается в пытку. И яркая, красочная картинка на экране маленького компьютера в условиях умеренной освещенности в этом смысле ничуть не лучше. Поэтому мы можем смело записать в плюсы компьютеров Pocket PC еще и заботу о нашем зрении.

В современных КПК рефлективная подсветка используется только для удешевления моделей, а если производитель хочет предоставить экран максимального качества, то используется трансфлективная матрица. Практически сохраняя все особенности отражающей конструкции, источник света перемещается за стекло — освещение становится более равномерным и контрастным, а цвета более живыми.

Экран iPhone, устроен по другому и его конструкция — тема отдельной статьи. Здесь же мы отметим лишь одну особенность экрана устройства от Apple.  Согласно многочисленным отзывам пользователей iPhone, иногда им не хватает возможности использовать стилус для ввода или управления. Несмотря на то, что сама ОС и приложения для iPhone, ориентированы исключительно на управление пальцами, на рынке существуют специальные стилусы для работы с устройствами, имеющими экраны емкостного типа. Так что, если вы привыкли пользоваться стилусом, то и управлять iPhone, можно и при помощи пера.